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Abstract. The hypoxic zone in the northern Gulf of Mexico is among the most dramatic
examples of impairments to aquatic ecosystems. Despite having attracted substantial attention,
management of this environmental crisis remains challenging, partially due to limited monitoring
to support model development and long-term assessments. Here, we leverage new geostatistical
estimates of hypoxia derived from nearly 150 monitoring cruises and a process-based model to
improve characterization of controlling mechanisms, historic trends, and future responses of
hypoxia while rigorously quantifying uncertainty in a Bayesian framework. We find that Novem-
ber–March nitrogen loads are important controls of sediment oxygen demand, which appears to
be the major oxygen sink. In comparison, only ~23% of oxygen in the near-bottom region appears
to be consumed by net water column respiration, which is driven by spring and summer loads.
Hypoxia typically exceeds 15,600 km2 in June, peaks in July, and declines below 10,000 km2 in
September. In contrast to some previous Gulf hindcasting studies, our simulations demonstrate
that hypoxia was both severe and worsening prior to 1985, and has remained relatively stable
since that time. Scenario analysis shows that halving nutrient loadings will reduce hypoxia by
37% with respect to 13,900 km2 (1985–2016 median), while a +2°C change in water temperature
will cause a 26% hypoxic area increase due to enhanced sediment respiration and reduced oxygen
solubility. These new results highlight the challenges of achieving hypoxia reduction targets, par-
ticularly under warming conditions, and should be considered in ecosystem management.

Key words: Bayesian inference; climate change; dead hypoxic zones; eutrophication; Gulf of Mexico;
hindcasts and projections; process-based modeling; riverine nitrogen; uncertainty quantification.

INTRODUCTION

The northern Gulf of Mexico harbors one of the lar-
gest hypoxic or “dead” zones in the world, often exceed-
ing 20,000 km2 in mid-summer (Obenour et al. 2013).
Hypoxic zones are areas with low bottom water oxygen
concentration (<2 mg/L), which can have a number of
negative effects on aquatic ecosystems and coastal
economies (Diaz and Rosenberg 2008, Smith et al.
2017). Even though an Action Plan to reduce the spatial
extent of Gulf hypoxia to 5,000 km2 has been in place
since 2001 (HTF 2001), the area of bottom-water
hypoxia does not appear to be decreasing (Forrest et al.
2011, Obenour et al. 2015). In this context, mathemati-
cal models are essential tools to understand how hypoxia
will respond to future nutrient management measures
and hydroclimatic conditions that influence the develop-
ment and severity of hypoxia (Scavia et al. 2017).

Models of intermediate (Justi�c et al. 2002, Scavia
et al. 2013, Obenour et al. 2015) and high (Justi�c and
Wang 2014, Feist et al. 2016, Fennel et al. 2016) mecha-
nistic complexity have linked Gulf hypoxia to both natu-
ral and anthropogenic causes. Stratification, which
inhibits reoxygenation of bottom waters, is principally a
natural phenomenon influenced predominantly by wind
and freshwater discharge (Wiseman et al. 1997, Obenour
et al. 2012). Anthropogenic impacts include nutrients
mostly leached from agricultural watersheds and trans-
ported through the Mississippi and Atchafalaya Rivers
(MARs; McIsaac et al. 2001). Once in the Gulf, these
nutrients promote the production of organic matter (i.e.,
phytoplankton), which is ultimately subject to microbial
decomposition that depletes oxygen in the bottom
waters (Justi�c et al. 2002, Turner et al. 2008).
While the broad causes of Gulf hypoxia are under-

stood, there is uncertainty related to how oxygen deple-
tion responds to anthropogenic and environmental
factors over different temporal scales, from daily to deca-
dal (Obenour et al. 2015, Yu et al. 2015). Past studies
have explored some of these issues using coupled hydro-
dynamic and water quality modeling (Hetland and
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DiMarco 2008, Laurent et al. 2018). However, there has
been limited uncertainty quantification, which is essential
to understand how much confidence should be placed in
model applications to future scenarios (Reichert and Bor-
suk 2005, Robson 2014). Two notable exceptions include
Obenour et al. (2015), which focused on probabilistic
inference of biophysical parameters controlling interan-
nual variability in mid-summer hypoxia, and Mattern
et al. (2013), which tested hypoxia model sensitivity to
various uncertain model inputs. However, there remains a
need for studies that rigorously characterize parameter
uncertainties and allow for probabilistic predictions
throughout the hypoxic season. Additionally, most mod-
els of hypoxia formulate sediment oxygen demand (SOD)
either as a constant process disconnected from incoming
nutrients (Hetland and DiMarco 2008, Obenour et al.
2015) or, at the opposite end of the spectrum, as instanta-
neous remineralization of the settled organic matter (Fen-
nel et al. 2013). These parameterizations, which are not
well-suited to study the delayed impacts of nutrient loads
over multiple seasons, may limit our ability to accurately
predict hypoxia, especially considering indications that
SOD is the predominant oxygen sink for Gulf bottom
waters (Dortch et al. 1994, Qui~nones-Rivera et al. 2007,
Yu et al. 2015). Finally, while studies have investigated
the effects of either reducing nutrient loads (Scavia et al.
2013, Feist et al. 2016, Fennel and Laurent 2018) or cli-
mate warming (Justi�c et al. 1996, Laurent et al. 2018),
there is currently no probabilistic assessment of the
potentially countervailing effects of increased tempera-
ture and nutrient reductions on Gulf hypoxia.
To address these issues, we enhance the mechanisti-

cally parsimonious model of hypoxia from Obenour
et al. (2015) hereafter referred to as OMS15. Parsimo-
nious models fall within the modeling spectrum ranging
from simple regressions (Greene et al. 2009, Le et al.
2016, Del Giudice et al. 2018b) to high-resolution
hydrodynamic-biogeochemical models (Meier et al.
2011, Fennel et al. 2016), and have been successfully
employed to understand and predict eutrophication-
related phenomena in the Gulf (Justi�c et al. 1996, Scavia
and Donnelly 2007, Scavia et al. 2013, Obenour et al.
2015) and other aquatic systems (Rucinski et al. 2010,
Chapra et al. 2016). Also, we leverage new, geostatisti-
cally derived estimates of Gulf dissolved oxygen from
Matli et al. (2018) hereafter referred to as MFO18.
Compared to previous Gulf studies focusing only on
mid-summer hypoxic conditions (Greene et al. 2009,
Forrest et al. 2011, Scavia et al. 2013, Obenour et al.
2015), these new estimates allow for calibration and pre-
diction of hypoxia over the entire summer. The main
objectives of this study are to (1) provide new insights
into oxygen demand by incorporating autumn-spring
loads in a new formulation of sediment respiration; (2)
generate for the first time, daily probabilistic (Bayesian)
predictions of hypoxic area (HA) over June–September;
(3) hindcast oxygen demands and HA from 1968 to 1984
(before regular monitoring began) and assess long-term

trends in Gulf hypoxia through 2016; and (4) conduct
scenario analyses of the effects of changing nitrogen
loads, hydrology, and water temperatures on future HA
and seasonal duration.

MATERIALS AND METHODS

Study area and data

We consider the Louisiana–Texas (LaTex) shelf from
Galveston Bay to the Mississippi River Delta, where
hypoxia is most common (Wiseman et al. 1997, Matli
et al. 2018). The shelf is divided into east and west sec-
tions relative to the Atchafalaya River outflow
(Appendix S1: Fig. S1), as these regions can have differ-
ent bottom-water dissolved oxygen (BWDO) dynamics
(Obenour et al. 2013, Fennel et al. 2016). We take
advantage of a large sample of cruises from multiple
monitoring programs (n = 149; Matli et al. 2018) to
characterize the variability in oxygen conditions on the
LaTex shelf. For each cruise date, scattered measure-
ments of BWDO are converted through geostatistical
modeling to “observations” of section-specific average
BWDO (Appendix S1: Table S1) and shelf-wide HA
(Matli et al. 2018). Specifically, we use MFO18’s space-
time geostatistical approach, which associates uncer-
tainty bounds to estimates of BWDO and HA.
To model hypoxia, we use multiple environmental

inputs. Riverine data include monthly discharge and
nitrogen (N) loads from the U.S. Geological Survey
(data available online).4 As in OMS15, we use total
bioavailable N load, which is composed of nitrate,
nitrite, ammonia, and 12% organic nitrogen. We also use
daily discharge data from the U.S. Army Corps of Engi-
neers at Simmesport and Tarbert Landing to estimate
daily loads for the Atchafalaya and the Mississippi
River, respectively (data available online).5 As in
OMS15, we use wind inputs (speed and zonal velocity)
derived from National Data Buoy Center (NDBC) sta-
tions (Appendix S1: Fig. S1; data available online).6

To reconstruct hypoxia from 1968 to 1984, data
sources described above required some imputation. Sim-
ilar to Scavia et al. (2003) we impute missing MARs
loadings (Appendix S1: Section S1) using a regression
with USGS Mississippi NO2+NO3 loads and river flows,
which started being recorded in 1967. For wind, we
extend NDBC data backward from 1985 using NCAR
Reanalysis velocities (Kalnay et al. 1996) extracted from
two 2.5° square grid cells covering a large part of the
modeling domain and being centered at 27.5° and 30°
latitude and �92.5° longitude (data available online).7

4 https://toxics.usgs.gov/hypoxia/mississippi/nutrient_flux_
yield_est.html
5 https://www.mvn.usace.army.mil/Missions/Engineering/Stage-
and-Hydrologic-Data/Historical-Discharges/
6 https://www.ndbc.noaa.gov/
7 https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly-
sis.pressure.html
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NCAR wind inputs for 1968–1984 are bias-corrected
through comparison with NDBC inputs during their
overlapping period (1985–2016).

Mechanistic model

We model oxygen dynamics using a process-based
formulation of intermediate biochemical complexity.
This mass balance model, developed and validated by
OMS15, represents each shelf section as two compart-
ments separated by the pycnocline (Fig. 1). Freshwater
and N from rivers are assumed to be advected above
the pycnocline by wind-driven coastal currents. Late
spring and summer N loads are transformed into algal
production, represented as organic carbon (C), which
settles to the lower compartments. Here, dissolved oxy-
gen is lost due to the microbial decomposition of C,
represented in the model as water column oxygen
demand (WCOD). Oxygen levels are further depleted
through sediment oxygen demand (SOD), which, unlike
OMS15, now varies based on empirical relationships
with long-term N loading through March. We note that
while much of the WCOD consumption is expected to
occur in the water column below the pycnocline (Mur-
rell and Lehrter 2011), it is likely that some of this
near-term production settles to the seafloor over the
course of the summer (Rowe et al. 2002). Thus, SOD
and WCOD primarily reflect the effects of N loadings
over different time scales, similar to the representation
of oxygen demands in Katin et al. (2019), rather than
represent the exact depths at which oxygen consump-
tion occurs. Finally, oxygen is replenished through
exchanges with the surface layer, which is approximately
saturated.
OMS15 model is based on a steady-state solution

to mass balance differential equations. Using time-
varying inputs, we predict daily BWDO (Ob) concentra-
tion (mg/L) from 1 June to 30 September of each year:

Ob ¼ ðkaOs �DwÞ
ka �Ds=Of

� 1 (1)

where ka is the reaeration rate (m/d), Dw is the WCOD,
and Ds is the SOD at Of, a reference oxygen concentra-
tion set to 3 mg/L. The solution is adjusted based on a
reanalysis of cruise profiles, which indicates that BWDO
is approximately 1 mg/L lower than the average oxygen
concentration below the pycnocline. As we model oxy-
gen dynamics over four months, we set the saturation
concentration, Os, to 6.54, 6.52, 6.48, 6.53 mg/L for
June, July, August, September, respectively. These con-
centrations are derived (Greenberg et al. 1992) from
average surface layer temperature and salinity measure-
ments and suggest little temporal variability.
Consistent with OMS15, the net WCOD (g�m�2�d�1)

of each lower compartment is represented as

Dw ¼ Jcx ¼ k
Lr þ Lu

ðQr þ Qu þ QgÞ=m þ A

� �
cx: (2)

here, J is the downward carbon flux (g�m�2�d�1), c is the
mass ratio of oxygen demand to organic carbon set to
3.5 (Justi�c et al. 1996, Chapra 1997), k is the ratio of
organic carbon to nitrogen set to 5.68 (Redfield et al.
1963), A is the area of the shelf section (Gm2), x is an
oxygen demand adjustment factor, and m is the effective
settling velocity (m/d), which incorporates both the pro-
duction and sinking of organic matter. These latter two
parameters are calibrated through Bayesian inference.
The variables Q and L represent the near-term flows
(Gm3/d) and N loads (Gg/d) entering the upper com-
partments, respectively. Subscripts r, u, and g denote the
origin of these fluxes: MARs, upstream (i.e., eastern)
shelf section, and the greater Gulf of Mexico. Qg is
approximated as a dilution factor (3.2, derived from sur-
face salinity data) multiplied by mean Mississippi River
discharge (1.6 Gm3/d).

Atchafalaya 
River

Mississippi
River

N N

C
O

C
O
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FIG. 1. Schematic representation of the LaTex shelf, its conceptual compartmentalization, and main fluxes considered by the
model. N, O, and C stand for nitrogen, oxygen, and carbon, respectively. Oxygen sources and sinks are represented by dashed lines.
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The reaeration rate for each section is determined as a
function of wind stress (representing shear-induced tur-
bulence) and freshwater flow (representing buoyancy):

ka ¼ b0 þ b1
U2

Qs

A
10;000

(3)

where U is the 14-d weighted mean wind speed for the
shelf section (m/s), Qs is the river discharge entering
the section [Gm3/d], and b0 and b1 are calibration
parameters.
The model uses near-term inputs 30–90 and 0–60 d

before the date of prediction. The 30–90 d inputs regu-
late WCOD, taking into account the additional time
required for algal growth and subsequent trophic pro-
cesses (e.g., grazing, excretion, decomposition). For the
mid-summer cruises taking place around the end of July,
this period approximately covers May–June, which have
been shown to be the months whose nutrient loads are
highly predictive of mid-summer hypoxic area (Scavia
et al. 2003, Forrest et al. 2011). Shorter-term (0–60 d)
inputs instead regulate water stability and thus reaera-
tion (Obenour et al. 2015). For both inputs, partitioning
is computed through

FW ¼ 0:5� beve (4)

where FW is the fraction of abovementioned flows and
loads transported westward over the shelf, ve is the mean
eastward wind velocity (m/s), and be is a calibration
parameter. The 0.5 indicates that, in absence of wind,
inputs from both rivers would equally partition west-
ward and eastward (Obenour et al. 2015).
The main mechanistic enhancement with respect to

OMS15 is a more realistic SOD formulation that is also
unique relative to other Gulf hypoxia models (Fennel
et al. 2013, Feist et al. 2016). While the original model
only included a constant respiratory flux B, SOD is now
represented as

Ds ¼ B

ffiffiffiffi
L
�L

r
hT��T (5)

where L (Mg/month) is the combined nutrient loading
from the MARs, averaged until March, which is the
month when near-term nutrient inputs start affecting
WCDO and thus BWDO in early summer. We normalize
these pre-spring loads relative to their long-term average
(�L) for the study period. The load dependency is square-
root transformed, reflecting the fact that sediment-
related oxygen demands tend to saturate at high levels of
organic matter (Di Toro 2001). Also, SOD is tempera-
ture dependent because higher temperatures increase the
metabolism of microbes decomposing organic matter in
the sediments (Thamdrup et al. 1998, Hetland and
DiMarco 2008). Temperature dependence is based on
the Arrhenius model with h = 1.07, a formulation often
used to correct respiration rates (Chapra 1997, Gujer
2008). Rates are corrected when temperatures deviate

from �T , the summertime average. Here, T is the monthly
mean temperature determined from cruise measure-
ments at a water depth of approximately 30 m (25.6,
26.2, 25.7, and 25.4 °C for June, July, August, and
September, respectively).
In the model, SOD represents the remineralization of

less labile organic matter that is produced and settled
before summer. This formulation reflects the expectation
that production over the long-term can lead to accumu-
lation of organic carbon in coastal sediments (Justi�c
et al. 2002), which influences the amount of detritus
available for remineralization in later summer months
(Turner et al. 2008). Multiple accumulation windows are
tested, beginning in the preceding autumn or multiple
years back (starting in October, the beginning of the
water year). This wide range of windows is motivated by
previous studies indicating that hypoxia may be influ-
enced by loadings occurring over the previous year
(Matli et al. 2018) or over multiple years (Turner et al.
2006, Del Giudice et al. 2018b). We test these alternative
loading windows based on their ability to improve the
model’s predictive skill for BWDO.

Inference and predictions

Our approach combines the advantages of mechanis-
tic modeling with those of Bayesian inference, enabling
us to make probabilistic statements on parameters and
predictions of water quality (Arhonditsis et al. 2008,
Sikorska et al. 2015). We describe the BWDO response
(ye and yw for east and the west shelf sections, respec-
tively) as a combination of mechanistic model output
(Ob from Eq. 1) and a Gaussian white noise error 2 lar-
gely representing model structural uncertainty:

y ¼ Obð0Þþ 2 ð0Þ: (6)

Both the mechanistic and stochastic components of
the model have parameters 0 to be estimated. In a Baye-
sian framework, parameter calibration is equivalent to
estimating the posterior probability distribution given
the BWDO concentration observations (ye, yw):

pð0jye; ywÞ / pð0Þpð�Jeð0ÞÞpðyejObð0Þ;reð0ÞÞ
pðywjObð0Þ;rwð0ÞÞ:

(7)

here, pð0Þ represents the joint prior distribution that for-
malizes our knowledge of parameters (Appendix S1:
Table S2) before introducing the cruise-based measure-
ments of BWDO (Appendix S1: Table S1). Model
parameters include both process coefficients (e.g., v, the
effective settling velocity) and error metrics. In addition,
pð�Jeð0ÞÞ represents a prior constraint for the average
eastern-section carbon flux of N (0.29,0.05) g�m�2�d�1

(Redalje and Fahnenstiel 1994, Obenour et al. 2015).
Finally, pðyejObð0Þ;reð0ÞÞpðywjObð0Þ;rwð0ÞÞ is the like-
lihood function, which represents the probability that
the measured BWDO is generated by the biophysical-
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Bayesian model. Here, reð0Þ and rwð0Þ are standard
deviations for the two shelf sections, which combine rm,e

and rm,w, model structural uncertainty from 2 ð0Þ, and
measurement uncertainty specified by the geostatistical
model (Matli et al. 2018).
After inference based on oxygen concentrations,

we predict HA (yH) at the bottom of each section by
using a transformation, g(), of BWDO with error p
(Appendix S1: Section S2):

yH ¼ gðObð0Þþ 2 ð0ÞÞ þ p: (8)

The posterior predictive distribution of HA is computed
via

pðyH jye; ywÞ /
Z

pðyH j0Þpð0jye; ywÞd0: (9)

This marginalization over the posterior distribution is
performed via Monte Carlo simulations by propagating
1,000 posterior parameter samples through Eq. 8,
enabling us to generate time series of HA that account
for total predictive uncertainty. Inference and prediction
are computed in R version 3.5.3 (R Core Team 2019).
Sampling of the posterior uses an adaptive Metropolis
algorithm (Haario et al. 2001, Del Giudice et al. 2018a).

Scenario projections

The model is used to predict the effects of reduced
nutrient loading and increased temperature and freshwa-
ter discharge. We combine the strengths of ceteris pari-
bus analysis, in which sensitivities to individual input
types are quantified (Obenour et al. 2015, Scavia et al.
2017, Del Giudice et al. 2018b), and classical scenario
analysis, in which multiple input types are plausibly var-
ied at once (Justi�c et al. 1996, Meier et al. 2011, Laurent
et al. 2018). Specifically, we consider four main types of
changes: reduced MAR nutrient concentrations relative
to historical levels, increased water temperatures, and
reduced nutrients combined with increased temperature
with or without increased discharges. For nutrient man-
agement scenarios, we select a range of reduction per-
centages comparable to previous assessments (HTF
2017, Scavia et al. 2017). For warming scenarios, we
consider temperature increases consistent with previous
studies of climate change in the Gulf (Justi�c et al. 1996,
Laurent et al. 2018). For scenarios combining nutrient
decreases and higher water temperatures, we select +2°C,
congruous with other studies of hypoxia under climate
change projections (Justi�c et al. 1996, Del Giudice et al.
2018b, Irby et al. 2018, Laurent et al. 2018). Scenarios
consider the effect of temperature on both oxygen satu-
ration (Os) and benthic respiration (Ds) through the
mechanisms described above. Consistent with Irby et al.
(2018), we consider a homogeneous increment in surface
and bottom water temperatures as both are likely to
increase over the long term. This approach also repre-
sents a parsimonious solution to the discordant findings
on warming of Gulf waters: according to data analysis

bottom temperatures are warming more than surface
temperatures (Turner et al. 2017), yet some modeling
results indicate the opposite (Laurent et al. 2018). While
temperature increases are the most likely effect of cli-
mate change in the Gulf (Biasutti et al. 2012), we addi-
tionally consider a scenario group in which changes in
nutrients and temperature are accompanied by a 10%
increase in river discharge owing to climate change (Lau-
rent et al. 2018). Finally, we acknowledge that other
driving factors, such as winds, may also be affected by
climate change. However, we focus exclusively on warm-
ing and increased freshwater inputs, as projections for
other factors are less certain in terms of both magnitude
and direction (Biasutti et al. 2012, Feng et al. 2012,
Laurent et al. 2018).
For each scenario, we recalculate the distribution of

average hypoxic extent and duration over the 32-yr study
period, under the proposed changes in riverine nutrient
concentration, flow, and/or water temperature. In prac-
tice, the extent distribution is approximated by propagat-
ing a large sample of the posterior pð0jye; ywÞ through
the model (Eq. 8) and averaging each model realization
through time. The duration of hypoxia is calculated by
counting, for each realization, the fraction of days hav-
ing HA exceeding a given threshold.

RESULTS AND DISCUSSION

Impact of variable SOD rate on model performances

In this study, we explore how SOD varies based on
long-term N loading, which represents an important
modeling enhancement relative to OMS15 and other
hypoxia modeling studies. The variable SOD formula-
tion is compared to a null model utilizing a constant
SOD. Calibrating this null model to the BWDO data
(n = 149, per shelf) leads to R2 = 0.576 (fraction of
variance explained). As we hypothesized, including pre-
spring loading (L) in the model’s SOD formulation
(Eq. 5) generally enhances predictive performances.
Specifically a loading window beginning in September,
October, or November results in the best model perfor-
mances (R2 = 0.638 for all three), whereas considering
longer or shorter loading periods leads to a gradual
performance deterioration (e.g., R2 = 0.632 for August,
R2 = 0.636 for December). Multi-annual loads lead to
little or no improvement with respect to the null model.
For instance, starting loading accumulation in October
of two or seven years earlier only leads to a R2 of 0.579
or 0.571, respectively. The finding that autumn–winter
loads increase the (absolute) variance explained by the
model by more than 6% without the need for addi-
tional calibration parameters is remarkable, as previous
models of Gulf hypoxia have focused mostly on May
(Forrest et al. 2011, Obenour et al. 2012, Scavia et al.
2013) or May–June (Scavia et al. 2003, Obenour et al.
2015) loads. Thus, these results emphasize the role of
sediments in accumulating oxygen demand over longer
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time periods, consistent with what has been found for
other hypoxic systems such as the Baltic Sea (Pitk€anen
et al. 2001) and Lake Erie (Del Giudice et al. 2018a).
At the same time, the time scales of nutrient loading
most influencing Gulf SOD and hypoxia (<1 yr) appear
to be shorter than the multi-year time scales of those
more enclosed systems. This outcome is consistent with
the Gulf of Mexico being a relatively dynamic system
for which seasonal accumulation of organic matter is
more important than multi-annual storage (Justi�c et al.
2002). Interestingly, November–April riverine inputs
have been shown to influence SOD in another hypoxic
coastal system (Katin et al. 2019). Overall, considering
nutrient loadings before November does not improve
model performances further, which is also consistent
with the regression results of MFO18. Therefore, the
SOD formulation of the final model uses average
November–March N loading from MARs.

Bayesian parameter estimates

Calibration of the final model generates posterior
parameter distributions pð0jye; ywÞ that are more precise
than the priors (Fig. 2). This high posterior identifiabil-
ity suggests that the model structure is appropriate and
the amount of calibration data is sufficient (Omlin and
Reichert 1999, Del Giudice et al. 2015, McElreath
2018). The average correlation between parameters is
low (r = 0.10), yet is moderate for b1 and B (r = 0.85),
which implies that the relative importance of reaeration
and average SOD is well constrained yet their absolute
value can be somewhat uncertain. This latter correlation
is not surprising as the two parameters have similar yet
opposing effects on BWDO: an increase in b1 enhances
mean reaeration while an increase in B increases mean
SOD. Of these two parameters, B appears to be more
robustly resolved than b1, considering its lower coeffi-
cient of variation (16.9% vs. 19.4%) and smaller shift
with respect to the original OMS15 posteriors (2.3% vs.
87.3%). Compared to OMS15, parameter uncertainties
are lower, on average, which largely reflects the availabil-
ity of almost six times the previous number of geostatis-
tical BWDO observations.
Posterior estimates of effective settling velocity v and

average sediment respiration rate B are similar to
OMS15’s estimates. These consistencies indicate that the
mid-summer BWDO data used in OMS15 are sufficient
to estimate v and B, and that these parameters are robust
to moderate changes in model formulation (e.g., intro-
duction of Eq. 5) and a substantial increase in calibra-
tion data (27 vs. 149 cruises). The consistency of the
sediment respiration parameter is notable, as other mod-
els have shown high sensitivity of hypoxia to different
SOD representations (Fennel et al. 2013). At the same
time, the richer calibration data set enables us to refine
estimation of the net water column demand as con-
trolled by the WCOD adjustment (x), reaeration coeffi-
cients (b0 and b1), and the east-west advection

coefficient (be). The lower x suggests that off-shelf losses
of primary production, horizontal influx of oxygenated
water, and/or photosynthetic oxygen production might
be more important than previously thought. The latter
interpretation is consistent with Yu et al. (2015) who
found that primary productivity can offset up to 72% of
the total respiration below the pycnocline. Our reaera-
tion rates for the east and west sections range from 0.18–
0.72 and 0.21–0.66 m/d (95% intervals), respectively,
which is comparable to the range of 0.17–0.86 m/d
determined by Justi�c et al. (2002). Additionally, low x
could also represent a portion of the seasonally-pro-
duced organic matter settling and being subsumed into
SOD. Model residual (error) standard deviations (rm,w,
rm,e) have posteriors very similar to those in OMS15, at
about 0.35 mg/L. This demonstrates that a model ini-
tially developed to predict mid-summer oxygen depletion
is sufficiently adaptable to predict the evolution of
hypoxia over the entire summer with only a small
increase in residual uncertainty. These error parameters
also show that, when using the same (current) BWDO
data, structural uncertainty of the current model is lower
than that of OMS15 model (Appendix S1: Fig. S3),
further supporting adoption of the updated SOD
formulation.

Oxygen demand apportionment and multi-annual trends

The model distinguishes between two types of oxy-
gen consumption. The first is associated with the
decay of less labile organic matter accumulated in the
sediments (i.e., SOD), which is influenced by Novem-
ber–March nutrient loads. The second is associated
with organic matter from spring and summer N loads,
which is expected to manifest largely as WCOD. Both
oxygen sinks vary over time. For the period of
recorded hypoxia (1985–2016), the two oxygen sinks
have different magnitudes (g�m�2�d�1), with SOD
(mean = 0.33, SD = 0.05) being three times larger than
net WCOD (mean = 0.10, SD = 0.05). The fraction of
overall oxygen demand accounted for by SOD ranges
from 70% in 1990 to 88% in 1988 (Fig. 3). The finding
that sediments are the predominant sink of BWDO is
in contrast with previous studies that have attributed
preponderant importance to WCOD (Scavia et al.
2003, 2013, Murrell and Lehrter 2011). However, our
partitioning of WCOD and SOD is consistent with
findings that 68% of respiration in the bottom 5 m
(Yu et al. 2015) and ~74% of respiration in the bottom
~1 m (Dortch et al. 1994, Qui~nones-Rivera et al.
2007) are derived from the sediments. Additionally, calcu-
lated SOD is within the approximate range of 5–
30 mmol O2�m�2�d�1 (0.16–0.96 g O2�m�2�d�1) reported
by other Gulf modeling (Yu et al. 2015) and field studies
(Dortch et al. 1994, Rowe et al. 2002, Murrell and Lehr-
ter 2011). While our SOD results are largely consistent
with the studies discussed above, we note that determi-
nations of water and sediment respiration can depend
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on context-specific definitions of the bottom water
layer (Yu et al. 2015). As discussed in the introduction
to the mechanistic model (in Methods), WCOD and
SOD are defined conceptually, rather than at precise
vertical locations, in order to distinguish the impact of
near-term vs. longer-term nutrient inputs. Interestingly,
annual SOD and WCOD are only weakly correlated
(r = 0.29), implying that years with lower than average
spring and summer loads can still experience intense
hypoxia caused by high November–March loads. An
example is 2005, which had high SOD (81st percentile)
and low WCOD (19th percentile) but experienced HA
12% larger than average. In comparison, for 2005,
models that did not directly account for winter loads
tended to underpredict HA (Fennel et al. 2013, Yu
et al. 2015). Overall, HA is strongly correlated to total
oxygen demand (r = 0.86), and moderately to WCOD
(r = 0.80) and SOD (r = 0.64; Fig. 2). Interestingly,
WCOD is more strongly correlated with HA than
SOD, despite the latter being a more important oxygen
sink. A plausible reason is that annual WCOD, but
not SOD, is also somewhat anticorrelated with mean
reaeration (r = �0.43). Seasonal nutrient loading and
stratification (enhancing water stability and thus
impeding reaeration) tend to be somewhat correlated
based on their common dependence on river flow
(Obenour et al. 2012).

Analysis of years with unusual hypoxia shows that
they are driven either by unusual nutrient loading (and
thus oxygen demand) or hydrometeorologic conditions
(and thus reaeration). Specifically, model results indicate
that 1993 experienced the highest oxygen demand and
HA, while 2000 experienced the lowest demand and HA.
The year 1988 experienced similarly low HA, yet with a
total oxygen demand that was only 11% lower than the
1985–2016 mean. However, the summer of 1988 experi-
enced above-average wind stress (Scavia et al. 2013) and
the lowest summer discharge, leading to high reaeration
of bottom waters (Eq. 3).
Our hindcasts, covering five decades, shed light on

whether hypoxia in the Gulf has been worsening. Prior
studies have argued that BWDO has been decreasing
(Justi�c et al. 2002) and that the spatial extent of Gulf
hypoxia has been increasing since the 1980s (Turner
et al. 2006, 2008) and even doubled since 1985 (Sylvan
et al. 2006). However, more recently OMS15, analyzing
model residuals, found no significant decrease in
BWDO for 1985–2011. Our new estimates (Fig. 3) also
do not exhibit a significant multi-annual trend for
1985–2016, yet show that the propensity of the system
to become hypoxic has increased over the period lead-
ing up to the beginning of regular hypoxia monitoring
(1985). In particular, between 1968 and 1985, we esti-
mate that oxygen demand increased at a rate of

ν (m/d)
0.1 0.2 0.3 0.4 0.5

ω

0.1 0.2 0.3 0.4 0.5 0.6

Prior
This study
OMS15

β0 (m/d)
0.05 0.15 0.25 0.35

β1

0.1 0.2 0.3 0.4 0.5 0.6

B (g⋅m−2⋅d−1)

0.1 0.2 0.3 0.4 0.5 0.6

βe (s/m)

0.10 0.15 0.20 0.25

σm,w (mg/L)

0.2 0.3 0.4 0.5 0.6

σm,e (mg/L)

0.2 0.3 0.4 0.5 0.6

FIG. 2. Prior and posterior distributions of six biophysical process parameters and two error parameters (Appendix S1:
Table S2). Parameters estimated in this study are also compared to previous estimates using the same priors (Obenour et al. 2015).
Posteriors are depicted as smoothed kernel density estimates based on 1,000 Markov Chain Monte Carlo samples. The y-axis repre-
sents probability density.
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14 mg�m�2�d�1 per year (p = 3�10�4) and HA at a rate
of 530 km2 per year (p = 5�10�3). These results are gen-
erally consistent with studies that indicate there was a
substantial increase in hypoxia in the late 1970s and
early 1980s due to increasing nitrogen loads (Justi�c
et al. 2002, Scavia et al. 2003, Scavia and Donnelly
2007, Turner et al. 2008). However, our results conflict
with the conclusion that, before 1978 or 1981 (depend-
ing on the particular study; Justi�c et al. 2002, Scavia
et al. 2003, Turner et al. 2006, 2008), loads were insuffi-
cient to generate systematic hypoxia. Instead, we find
that, from 1968 to 1979, summertime HA ranged from
5,900 (lowest HA) to 17,400 km2 (88th percentile of
HA, 1985–2016), which is comparable to the estimates
of Scavia and Donnelly (2007) and Greene et al. (2009).
When compared to all previous hindcasting studies, the
model applied here benefits from a longer and more
accurate calibration data set (Matli et al. 2018). Longer
calibration spanning a variety of conditions is likely to
generate more representative model parameters (Del
Giudice et al. 2018a). Finally, the finding that hypoxia
was both substantial and increasing prior to 1985 is
corroborated by paleoindicators in Gulf sediments
(Rabalais et al. 2007). Specifically, sediment cores show
that the shelf has experienced substantial oxygen stress
since the 1950s and that conditions have been deterio-
rating at least until the 1980s.

Daily predictions and intraseasonal variability of hypoxic
area

For every summer day, our Bayesian mechanistic
model can predict HA and simultaneously quantify
three major types of uncertainties, specifically associated

with calibration parameters, system representation, and
transformation from BWDO to HA. Additionally, the
method explicitly accounts for a fourth source of uncer-
tainty, namely that associated with BWDO observations.
This approach is different from most Gulf modeling
studies that only showed the most likely conditions yet
did not quantify the impact of model limitations and
imperfection of calibration data (Justi�c et al. 2002,
Turner et al. 2006, Justi�c and Wang 2014). However, rig-
orous uncertainty analysis can provide essential infor-
mation for environmental planning and management
(Reichert and Borsuk 2005, Arhonditsis et al. 2008), for
instance answering questions about the probability of
exceedance of critical thresholds over various time
scales.
Daily predictions of HA show that total uncertainty

of the model is comparable and often lower than the
uncertainty around the geostatistical HA observations
(Fig. 4), particularly for observations corresponding to
cruises with relatively sparse sampling. Model predic-
tions and observations generally agree when distinguish-
ing between months with mild and severe hypoxia
(Appendix S1: Figs. S4–S11), with the model predicting
hypoxia to be maximum in July in 56% of the years, June
in 38% of years, and August in 6% of years. Consistent
with these results, July has the largest average hypoxic
area (15,800 km2) and September has the lowest
(9,900 km2) of the summer season. When comparing
our intraseasonal predictions with those from other
mechanistic models, there are notable differences. For
example, predictions from Yu et al. (2015) suggest aver-
age June HA is mostly below 5,000 km2, and HA peaks
in August or September in 75% of years. A similar
apparent underestimation of HA in June and
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overestimation in September is also observed in other
mechanistic model formulations (Fennel et al. 2016). A
likely reason for the more accurate representation of
intraseasonal hypoxic patterns is our extensive and
robust data set of shelf-wide BWDO that spans hypoxic
conditions from late spring to early autumn, thus
enabling a more realistic tuning of model parameters.

Scenario projections

Projection results highlight the sensitivity of average
hypoxic area to specific changes in watershed nutrient
management and climate (Fig. 5). While these scenarios
are not intended to represent HA at any specific time,
they seek to quantify how historic hypoxia could be
affected by realistic nutrient (HTF 2017) and hydrocli-
matic (Laurent et al. 2018) conditions for the mid-
to-late 21st century. The reference case for the projections
is the June-September average over 1985–2016, which has
a median of approximately 13,900 km2. Given the long
period over which averages are taken, uncertainty in these
projections primarily reflects parameter uncertainties.
Our projections also indicate the probability that hypoxia
exceeds a specific threshold of extent (5, 10, or 15�103 km2)
during a summer day (1 June to 30 September).
Results of nutrient reduction scenarios (Fig. 5A and

D) show that, under constant climatic conditions, reduc-
ing riverine nutrient loads (while keeping discharges con-
stant) is expected to reduce hypoxia through its effect on
WCOD and SOD. Within the range of scenarios ana-
lyzed, the average response of the system is almost linear
with a 50% nutrient reduction translating into a 37%
reduction in total HA (35% reduction in the west section
and 41% in the east). This quasilinear response of HA
averaged over multiple years is consistent with results of
more complex biogeochemical modeling (Feist et al.
2016). Besides calculating average hypoxia, our proba-
bilistic predictions naturally lend themselves to quantify-
ing the days with hypoxia larger than a given areal
threshold, which provides a more complete picture of
the occurrence of severe oxygen depletion. Taking a 50%
nutrient reduction as an example, the curves show that
<10% of summer days would witness HA > 15,000 km2

while HA > 5,000 km2 would still occur more than 80%
of the summer.
With no nutrient reductions, increased temperature is

likely to exacerbate oxygen depletion by enhancing sedi-
ment respiration rates and reducing oxygen saturation
concentrations and thus reoxygenation (Fig. 5B and E).
In the case of increasing temperatures, the model shows
~12% increase in HA per each degree of warming. While
with historic temperatures (1985–2016), only 39% of
days are expected to have HA > 15,000 km2; with +2°C,
this number is predicted to increase to 62%. This tem-
perature increase is similar to the warming to be
expected at the end of the century in a “business as
usual” scenario (Laurent et al. 2018). While an increase
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Figs. S4–S11 show all years.
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of 2°C represents a slight extrapolation with respect to
the range of summer temperatures considered, our pro-
jections are likely to be more robust than previous ones
based on models of similar or lower complexity cali-
brated over shorter periods and using more extreme tem-
perature changes (Justi�c et al. 1996, Del Giudice et al.
2018b). Panels C and F show the countervailing effects
of temperature increase on nutrient reduction. With
+2°C, a load reduction of ~30% will be required to main-
tain HA at historic (1985–2016) levels. Additionally,
even with a 50% nutrient reduction, 21% of summer days
would witness HA > 15,000 km2 while HA > 5,000 km2

would still persist during more than 90% of the summer.
Compounding this temperature increase with a plausible
10% increase in riverine discharge (Appendix S1:
Fig. S12) will further countervail the efforts to reduce
HA, largely due to enhanced stratification and thus
reduced oxygen replenishment (Eq. 3). In this scenario

group, a load reduction ~35% will be required to main-
tain HA at historic levels, while with no nutrient reduc-
tion, hypoxia would be on average 30% larger than
historic levels. In general, these results corroborate that
climate change will exacerbate hypoxia in the Gulf
(Justi�c et al. 1996, Laurent et al. 2018), consistent with
studies of other large aquatic ecosystems (Meier et al.
2011, Del Giudice et al. 2018b, Irby et al. 2018).
The current strategy to achieve the target HA of

5,000 km2 is based on a 45% nutrient reduction (HTF
2017). Our results suggest that even in the conservative
case of no climate change, this 45% reduction recom-
mendation will result in an average summer hypoxia of
~9,300 km2, almost twice the target (Fig. 5). This find-
ing is close to recent multimodel projections (Scavia
et al. 2017) computing that a 45% load reduction will
reduce average HA to ~9,000 km2. However, our results
suggest the interim 20% nutrient reduction goal recently
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recommended by HTF (2017) may have some benefit by
reducing the time hypoxia exceeds 15,000 km2 by almost
40%, at least under current climate (Fig. 5D). We note
that this study does not consider all possible changes in
environmental factors such as alterations in wind pat-
terns. As explained in Methods, climate change impacts
beyond effects on temperatures are substantially less cer-
tain (Biasutti et al. 2012, Feng et al. 2012, Laurent et al.
2018), which motivated us to focus on more predictable
and management-relevant changes.

Modeling approach and future directions

This study takes advantage of mechanistic (deductive)
and Bayesian (inductive) modeling to advance our
understanding of oxygen depletion processes and drivers
and of the temporal variability in Gulf of Mexico hypox-
ia, from daily to multidecadal scales. Our approach miti-
gates the risk of overfitting, which can lead to parameter
estimates with reduced interpretability and predictive
power (McElreath 2018). Overfitting is prevented by
making use of prior information on interpretable model
parameters and process-based relationships that con-
strain model outputs. Model robustness is further
increased by assimilating a large data set and estimating
only six mechanistic model parameters. This hybrid
deductive-inductive approach seeks to extract the maxi-
mum amount of information from field observations
and prior knowledge of the system (Robson 2014) and
has advantages over purely statistical models based only
on patterns in the data but with no embedded physical
or biogeochemical mechanism (Forrest et al. 2011, Feng
et al. 2012, Le et al. 2016, Del Giudice et al. 2018b).
These inductive models usually have parameters without
a clear biophysical meaning, which makes it difficult to
incorporate prior information and interpret their param-
eter values relative to ecosystem processes.
The approach we present also has advantages and

disadvantages relative to highly mechanistic three-
dimensional hydrodynamic-biogeochemical models
(Feist et al. 2016, Fennel et al. 2016). First, simulation
with our model is almost instantaneous and only
requires easy-to-obtain hydrometeorological and nutri-
ent loading data. Computational efficiency facilitates a
long study period and rigorous calibration through
Bayesian parameter estimation. Parameters are repre-
sented by probability distributions and uncertainties
by stochastic processes. This makes our model predic-
tions probabilistic, which is particularly important to
assess future impacts of climate change and nutrient
management strategies (Reichert and Borsuk 2005).
Finally, our SOD formulation taking winter nutrients
into account represents a potentially more realistic for-
mulation than the instantaneous remineralization of
settled organic matter used in other modeling studies
(Fennel et al. 2006, 2013, Feist et al. 2016). A limita-
tion of the current approach is its coarse spatial reso-
lution, which only distinguishes between eastern and

western regions of the shelf. Also, our simple hydrody-
namic formulation considers westward transport driven
by wind and thus does not represent more complex
current patterns. Further, plankton dynamics are cur-
rently represented only implicitly and a parsimonious
approach is employed to convert nutrients into oxygen
demand. Finally, while our model formulation appears
to capture the primary drivers of hypoxia, we recog-
nize the value of developing ensemble predictions
across a range of formulations, especially when extrap-
olating over substantial changes in environmental forc-
ings (Meier et al. 2011, Scavia et al. 2017).
Regardless of the complexity of other models, the cur-

rent study has the advantage of assimilating and com-
paring results against a large number of cruises
(n = 149), which is substantially more than previously
used for calibration of statistical models or verification
of complex mechanistic models. For example, some sta-
tistical modeling studies have used as few as 9 or 12
cruise observations (Wiseman et al. 1997, Le et al.
2016), while complex mechanistic models have typically
been compared to even fewer HA estimates (Feist et al.
2016, Fennel et al. 2016). Our multidecadal calibration
period with multiple cruise observations in most sum-
mers helps ensure the robustness of both intraseasonal
and interannual modeling results. Additionally, model
and data are merged in a Bayesian framework, which
probabilistically considers different types of uncertainty.
In summary, combining Bayesian mechanistic model-

ing and an abundant data set of hypoxia observations,
this work generates important insights into controls on
oxygen depletion in the Gulf of Mexico. Unique from
some previous studies, we find that hypoxia is more sev-
ere in June than in September and that a significant
increasing trend in hypoxia likely ended in the mid-
1980s. Moreover, our results strongly suggest that
autumn-winter nutrient loads are a major driver of SOD
and hypoxia in the following summer. We further
demonstrate how the Bayesian framework allows for
daily oxygen predictions and long-term climate and
nutrient management scenario forecasts with quantified
uncertainties. We envision future advances in deductive-
inductive hypoxia modeling to focus on more explicitly
representing phytoplankton production. While complex
phytoplankton dynamics do not seem necessary to accu-
rately model the variability in Gulf hypoxia (Justi�c et al.
2002, Scavia et al. 2013), satellite measurements of
chlorophyll might help better constrain this additional
state variable and thus model parameters (Le et al.
2016). Additionally, we envision the inclusion of phos-
phorus (P) inputs in the organic matter generation.
While N seems more important than P in driving overall
hypoxic extent (Turner et al. 2006, Rabalais et al. 2007,
Scavia and Donnelly 2007), there is evidence that P rep-
resents a proximate limiting nutrient near the Mississippi
Delta during May–July (Sylvan et al. 2006, Fennel and
Laurent 2018). Finally, as geostatistical estimates of
hypoxic volume become more available, the model could
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be enhanced to probabilistically predict volume, in addi-
tion to hypoxic area. Mid-summer cruise data suggest
that hypoxic layer thickness varies substantially over
time (Obenour et al. 2013), and volume may respond
more strongly than area to nutrient loading reductions
(Scavia et al. 2018).
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